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NOTATION

Am Modified coefficient am

am  Coefficients in the internal field

bm  Coefficients in the internal field

cn, C Coefficients in the external field

D Coefficient in the internal field

F (,u) Function defined by Equation [37]

fm( .) Fenction defined by Equation [9]

g. (,) Function defined by Equation [13]

Pn.(pn ) Modified Bessel function of the first kind

KP (pnit)  Modified Bessel function of the second.kind

m, n Indices of summation

p Number of blades

R Propeller radius

r Radial coordinate

T1,V (V 11) Function defined by Equation [16]

IV Velocity of advance of propeller

wVelocity of advance of the helical sheets

2 Axial distance from propeller

X Nondimensional radius (r/R)

8 AM  Correction coefficient to A.

r Bound circulation

0 Angular coordinate

Ko 0Goldstein's factor for zero hub

K h  Goldstein's factor for finite hub

Xi Advance ratio

wr
/'I

V

'It'1



_ IV

V -(2m+ 1)

Velocity potential

Velocity potential defined by Equation [6]

wPropeller angular velocity

Subscripts

o Pertaining to quantities at r - R

I Pertaining to quantities at the hub

Primes denote differentiation with respect to the argument
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ABSTRACT

The potential problem-is solved for the circulation distribution of an

optimum propeller with a finite number of blades and a hub of constant diameter.

The effect of the hub has been calculated for specific cases, showing that it

becomes important for propellers with large hub diameters and small number of

blades and increases with increasing pitch.

INTRODUCTION

The determination of the bound circulation for an optimum propeller was initially per-

formed by Goldstein i who was able to relate the circulation distrihution of a prcpeller with a

finite number of blades to one having an infinite number. Goldstein's solution was, however,

performed for the case of a propeller having a zero hub diameter and when the vortex sheet

extends to the propeller axis. Such a solution is considered sufficiently accurate for propellers

with a hub diameter which is relatively small compared with the propeller diameter; in this

case, the presence of the hub is assumed to have little effect on the circulation distribution

along the radius.

However, the increasing use of propellers with relatively large hubs has emphasized

the need of a solution for such cases. The problem was originally investigated by Lerbs 2

who, through the use of corrective "induction factors," was able to considet the presence

of an infinitely long hub. A solution to the potential problem has also been given

by McCormick 3 for the effect of a finite hub but with simplified boundary conditions given at

the hub radius. The effect of such assumptions is to produ.- a discontinuous change of cir-

culation at the hub which is coutrary to available experimental evidence.

The problem is solved for a propeller having a minimum energy loss and for which the

flow far behind the propeller can be considered to be the same as that formed by rigid trailing

vortices moving backwards at constant angular velocity. The hub is assumed to be of constant

diameter and extending from the propeller plane to infinity.

STATEMENT OF THE PROBLEM

The problem is analogous to that of a propeller with zero hub I but with modified bound-

ary conditions. In this case, however, solutions which have singularities at the shaft axis

can also be considered.

IRetuteac.. are listed. on page 16.



Laplace's equation for this type of flow can be reduced to

(-)2 +A2 a 0 [1

where 4, is the velocity potential,

A is equal to-,

w is the angular velocity,

v is the velocity of advance,

r is the distance from axis of rotation,

is equal to 0 -- , and
V

r, 0, z are cylindrical coordinates.

The boundary condition which has to be satisfied on the vortex sheets is that the velocity be

normal to the sheet and can be, written as

a A + on C-0 or 21.

[2]
for rl<r<R or I<#<#0

where p is the number of blades,

R is the propeller radius,

r, is the hub radius,

Ao is equal to-, and
V

Al is equal to F1

Additional conditions have to be imposed at r - R where continuity should exist for both 40

and grad 4. Furthermore, grad j6 should also vanish at an infinitely large radius.

The presence of the hub imposes certain boundary conditions on both the circulation

at the vortex sheet and on the induced flow. When approaching r from inside the hub, the

circulation has to be zero. When, however, r I is approached from outside the hub, the possi.

bility exists that the circulation may change either discontinuously or continuously to zero.

A discontinuity in the circulation distribution at the hub will, however, mean that a discon.

tinuity will exist in the pressure field between two adjacent blades. Physical considerations

preclude the possibility of the existence of such pressure changes, and the flow will tend to

2



equalize from the pressure side of one blade to the suction side of the other. Furthermore,

available experimental information 4 indicates that the radial distribution of circulation is

continuous to zero at the hub. Hence, the boundary condition is written as

q r=0 at r=r 1 or [8]

The presence of the hub also requires that the radial component of the velocity be zero. By

this condition

0 0 at r =r 1 or [4]

SOLUTION OF THE POTENTIAL PROBLEM

THE EXTERNAL FIELD, r > R

The conditions of the problem are such that q5 has to be an odd function of C, single-

valued and continuous. Assuming that the solution can be expressed in a sine series, we find

that the coefficient of sin pnC must be a linear function of lpn(pnA) and Kpn(pnix), where I and

K are the modified Bessel functions. But Ipn(p) cannot occur since grad 0S must vanish when

r, or f, is infinite. A solution independent of C can also exist which satisfies Equation [1] and

which is in the form of log u. Hence, we may assume

00

2 c, KP,(pn A) sin pn +c log [5]

where c, are constants to be determined with Kpn(pnO) and log uo being inserted in the

denominator for future convenience.

THE INTERNAL FIELD, r < r < R

In this region we write

21 + C + 01 [6

where q6 is a velocity potential to be determined. For such a case the boundary condition

given by Equation [2], becomes

0 at C = 0 anda p

and Laplace's equation

3



\ @ d2 2
+ ( ) + 99~ = d 2  ~) [71

Since e is periodic in the interval 0 to 2 ir/p, it can be expanded in a half-range cosine series

cos (2 m + 1) PC

p NP L (2 m +1)2 [8]
M-O

and for the same interval, 0, I can be expanded in a semi-infinite cosine series in C

I = fo (A) + 'ff. () cos (2 m + - [9]
3=0

Differentiating term by term and substituting in Equation [7

fo (U) -[10]

and

f2 2 (2m+1)2  8 1 2

VP (2m+1 2

Equation [101 can be integrated to give

-- + D log IL [12]

where D log gIO is an arbitrary constant. We now consider a new function g,(g4, such that

)A) 8 1 A2  1A9r(1)= P (2m +1)2 + ;T

and Equation [11] becomes

(I& T . ( - (21n + 1) 2 (1 +112) _eg, (I) - (2 M + 1) 2 P JA2 [14]

The solution of this homogeneous differential equation can be recognized as a Bessel function,

while the particular solution can be written s as a Lommel function. The general solution for

g'(p) is

4



g9.L 60 T+ vi . V0A b , 2 K___ [15]. I Gm' 2 ") p KV(V11)"

where

P (2m+1)
2

2 + 16u 2 (1 _' 2 )

1+p 2  P2 (2m+1) 2 (1+ I 2 )4  [161

+ 256/12 (1-14/?2 + 21'U4 - 4/16)
P 4(2 M+ 1)4  (1 +f2)7 .. .

a m' bim' = arbitrary constants

Substituting the values for g. (p), fo (p), fm (p) into Equation [9] and hence into Equation [6]

we get

1 +a( + b K cos vC + D log- [17]
_=O (2m+1) 2  IV(Vpo) m K,(v1 0)  A0

where a. and bm are arbitrary constants to be determined from the boundary conditions.

DETERMINATION OF THE ARBITRARY CONSTANTS

The arbitrary constants am, bm, cn, c, and D are determined from the following boundary

conditions:
(a) , is continuous at r = R

(b) _ is continuous at r = Raft

(c) 0 =0atr=rI

(d) = 0 at r = ri

In order to evaluate the constants, it is first necessary to express 0 for the external field in

terms of sin pn C in the interval 0 < C < 2 ,,/p. In this range we write

Cos V C sinpR4 [18]

n=1 
4 n2 - (2m+1)

2

5



o4

Substituting Equation [18] in Equation [17] and equating to Equation [5] for f ='Uo and all ',

we satisfy boundary condition (a) when

cc

8 - 4 Ti, vilo) + a +~ 1m [19]
-Z 4n 2 -(2 M+1) 2 V (2m + m + 1C n

Similarly for boundary condition (b),

0

4 (2 m +1) r TIPP~ (Vio) IV (Vtto) AV' (iqi)1
m" O 4n 2 -(2m+1) 2 [+ m v(o) +m K((v22o) +

[20]

Spn (pn u0)
= n K pn (pn lo)

and

D=c

where primes denote differentiation with respect to the argument.

For zero circulation at the hub

n0 4 T1 V(vi) IV (pit ) KV (VI 21
2 (2M1) am + bm 0 211

=_ 4n_ 1 r (2 Me+1) 2  v(Vito) KV(vLo)

and from (d)

+a. +bm 1 +--0 [22]

m-o 4 n2 -(2M+) 2  (2m+1) 2  IV(Vso) KV(VIo )

Equations [19], [20], [21], -and [22] can be solved for the coefficients am, bi, c., and D. From

Equation [19] and [20], we obtain

m 2 m+1) _ 2n Kn(pnps)

.04n2  1) 1,, re 2 (Vito )  Kpn(pnuo)

b 0 Kv'(vuo) K .(l )

+ --- [(2m+1) _)2n Kn(7 -L [23]

- n 0 (4 2 rn+l)2  K,(VI' o ) KPn(PnMo)

2n T1,vV 0 ) (2m+1) TI" (vo
M-0 [4n-] KP n (pnuo)



The determination of the constants am and bm is now considered from Equations [21] and

[23]. A method of successive approximations can be used to determine the coefficients from

this infinite set of simultaneous equations. However, the singularity which exists at the edges

= 0 and 2 7r/p will result in a very slow convergence. Restricting the solution for values of

go which are not too small, we can write from Equation [16]

2
T1,v~ °)-- 1 0

This approximation improves with increasing number of blades. Also

2'tOV T, V (VLo)_( + 2)

Furthermore, using Nicholson's 6 asymptotic expansions

0p n~o =(+2) 2
(1+ 't2 'to _ !o (4-L0)

Kpn(pnpo) Po 2pn(l+ 0
2 ) 8P 2 n 2  2/2

or for po not too small
Kp'*,(pnAo) (1+,42)%

/Kpn(pnf 0) A0

Similarly

1J ("to) ( +'~) ) Ao __o(4-o

2)- 2 5/2
+

[,,(Vt) Ao 2Y (I + go) 8V(1 +Ao2)

'to

Equation [23] can then be written

[2 bm

2n- (2 '+ 1) 2n+(2m+1

[241
2 00 -

71 1+1 ( 4n2 - (2m +1)2] (21m+1)2 p 1+A2

7



For usual values of f0, it is possible to neglect the second term on the right-hand side of

[23] as compared with the first. Then,

m 0O a2 ( b 21 l

2n -(2m+1) n + (2 + 1 [251

and from Equation [211

. KV (Vf) [4 Tv(v v [(v1)
m Kv(VA 1) L. (2m+1) a T I(Vo) [26)

and finally we obtain

00Z am [12n-(2m+1) K,,(vAo) Iv(vlti) 1
2n-(2m+l) L 2n+(2m+1)K'(VLl) 1 V(v1-Lo )

2 TI0 (VIL 1 )
Ao ir +4Z T1, VK v(Vit o )  [7

1+f02 4n Ir m-O [2n+ (2m+1)] (2mr+1) 2 Kp(VILI)

for n=1, 2, 3,...

The existence of a solution for this infinite system cannot be shown, as the necessary theorems

have conditions which are too restrictive in this case. However, the system is convergent, and

a solution can be found by the standard method of successive approximations.

It will be noted that as the hub diameter tends to zero, i.e., ft tends to zero, Equation

[27] degenerates into a system of equations given by Goldstein.

DETERMINATION OF THE BOUND CIRCULATION

The circulation distribution is proportional to the discontinuity in velocity potential at

the screw surface C=0 or 2 w/p. If [0] denotes the discontinuity in the potential, then from

Equation [171

I I + a~ IV (VIL) + b K I
P' L= ' (2,+1)2 ' Is (it) KV(VM)j

It is then possible to write

2 r wv 2 rr

[4 _______ IV (V0s K,(VIA

-_ T  
_
)  a. +b K---( 1 [28]

0 (2m + 1)2 +  IV (VAo-- ) MKv (V11j

8



If '. is the circulation of a blade section for a propeller having an infinite number of blades,

then

21rwv 1+,u2

Defining Kh , where Kh is the factor for a propeller having a finite hub,

K2(=i 5.T'2(V + a IV (V) + Kv (v)1
h \~M 2 / L (2m+1) 2  

", o

or from Equation [261

+1,2) 00 T, , I vL) 2 f T-v(V ) K (VIA)

IT ,n=.O (2m +1) 2  Ti,(vft) K,(vIA1)J [29]

7r a2 . IV(vLo) I1 KV(vI) I,(v1)3

EFFECT OF FINITE HUB

The use of Equation [27] for the determination of the coefficients am involves consider-

able labor, and in order to indicate the effect of the hub, an alternative set of equations has

been derived in the Appendix. These equations involve simplifications of the basic development

but have good accuracy for the usual values of uo and for hub diameters not larger than half
the propeller diameter. The errors which are introduced decrease considerably with increasing

number of blades.

Through the use of Fquations [31], [39], [40], and [43] of the Appendix, calculations were

performed showing the effect of hub diameters of 0.2, 0.3 and 0.4 for a four-bladed propeller.

Both the factor K and the circulation distribution are shown on Figures 1 and 2 for this propeller

operating at 1/X, = 110 = 4.0. Note that the circulation function falls off to zero at the hub cor-

responding to the boundary condition (c) for the circulation. Near the tip, the distributions
for finite and zero hub coincide; this is to be expected since the influence of the hub must

decrease towards the tip. Figure 3 shows the ratio of the facLor K for a finite hub and a zero

hub for various hub diameters.

The effect of number of blades on K is shown on Figure 4 for a two-, a four-and a six-

bladed propeller operating at 1/k = o /= 4.0 for r/R = 0.2. Note that the effect diminishes

with increasing number of blades.

It should be noted that although the presence of the hub has an appreciable effect on

the circulation near the hub, the velocities are the same over the entire radius. Both the

condition of normality and Betz's condition hold for a finite hub, and they are sufficient to

uniquely determine the induced velocity components.

9
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CONCLUSION

The solution of the potential problem for a propeller with finite hub indicates that the

presence of the hub results in a decreased circulation at the inner radii. This effect becomes

important for propellers with large hub diameters or small number of blades and increases with

increasing pitch.

APPENDIX

APPROXIMATE SOLUTION FOR THE COEFFICIENTS

The solution of Equation [27] for the coefficient am involves considerable labor, and

an attempt has been made to approximate the solution of this system for usual values of 1.

For this purpose, let

am = A +8Am [301

where A m is the coefficient defined by Goldstein I and is given by

Am (2 M) [31]
22 " (m!)2 (2m+1)

and BA, is a correction coefficient to be determined. Furthermore, Nicholson's asymptotic

expansions 6 are used for the I and K functions, where

I( 1 evY [82]

\2rv (I+ 2)A

and

K i - e-vy [331
S+ 112)A

where

=1 log f- + 1 [84]

Substitution of Equations [30], [32], and [38] into the system of Equation [27], gives

12



~~'8A~_2 [- '(YO-yj) 4(1+L 2 'A 00 e(YO Y)
(2 +1) 2n+(2m+l) 7r 1m=o -(2m+1) , m=O [2n+(2m+l)] (2m+1)r

2 A -2v (y0 - Y)

1 + = 2n+(2m+1)

For usual values of and for values of r,/R which are smaller than 0.5, Am e V ( Y O- YI ) is

small compared with Tl,v(v l)/(2m+1)2 . Furthermore, the second term of the left-hand side

of Equation [351 is also small compared with the first and can safely be neglected. Equation

[35] can then be written

00 8M 2 T' T ",(vA)e e-,[o3

2n-(2m+1) - 01ril _ 2 [2n+(2m+1)l (2m+1) 2  [36]

Using Goldstein's definition of the T function as

T -'V(V)F (=pl) [371
1+2 *j'(2m+ 1)

it is found that the terms corresponding to values of m = 1, 2, 3 . . . of the right hand-side of

equation can be omitted with good accuracy. The error introduced by such an approximation

is less than 3-percent ir. the determination of the value of A.., for a two-bladed propeller,

r /R = 0.4 and Io = 3. The error decreases for increasing number of blades and increasing 'g"

Equation [36] becomes

p
00-2 

(Yo - Y )AE 2n-(gm+1) Ir + 2) (IL

m=O 2 (2n+1)
[88]

for n = 1,2,3 ...

The F functions for two and four blades are plotted on Figures 5 and 6. Let[ 2 , .2 (Y - Y1 )
8A = 4, +JAI F i". - F )I 2 M [391

M IL 2 +L 2 P I

then B has to satisfy the equation

2n-(2m+1)2n+1 for n . 1,2,3 . . [40]

m=O

13



Solution of t he system [40) gives

B= -0.4762 B = 0.0136

B 1 = 0.1128 B6 = 0.0095

B2 = 0.0531 87 = 0.0066

83 = 0.0309 88 = 0.0044

B 4 = 0.0200 B9 = 0.0025

When am is represented by Equation [30], the equation for the factor Kh, becomes

+2 00 2r 4 __ __ I L__ A 1 (is)
S 2 / = (2m+1) 2  1+g f2 I,(v L o)J

000

___I, - -s,,(, A ' /,(,,4) 1 'h ,q,,) [41]

2 = o2i00 (Vo)

It is noticed that the first term of Equation [41] is equal to the ratio of the circulations for a

propeller having zero hub. Denoting this by K0 and writing

-h [. ' - Am , [42]

then

,, ,2K,(,) A,,+G)I', K ,o) ' ,(",,o)

__2 Z () I 1  K (VIA 1) 1,[48]

The factor is can, therefore, be considered as a correction factor to the case of a propeller

with zero hub and can be evaluated using Equations [311, [39] and [40] for the coefficients

Am and +Am.

14
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